

ATC002 火花源/电弧原子发射光谱分析 技术考核与培训大纲

CSTM 合格评定 试验人员能力专业委员会 全国分析检测人员能力培训委员会(NTC)

文件编号: ATC002/A:2024-1

发布日期: 2024年12月1日

1 总则

1.1 目标

熟悉火花源/电弧原子发射光谱(SPARK/ARC-AES)分析技术基本概念及基础理论知识;了解 SPARK/ARC-AES 光谱仪组成结构及工作原理;具备 SPARK/ARC-AES 光谱仪的实际操作能力;掌握 SPARK/ARC-AES 分析技术在相关领域的应用。

1.2 适用范围

本大纲适用于对金属固体样品进行直接分析的火花源/电弧原子发射光谱分析技术的考核与培训。适用仪器包括检测器为光电倍增管或 CCD 的各类固定式、移动式火花源/电弧原子发射光谱仪。

1.3 应具备的基础知识和技能

1.3.1 通用基础

具备分析化学的基础知识。

1.3.2 分析测试基本操作

具备分析化学实验的基本操作能力, 具备实验室一般仪器和设备的操作能力。

1.3.3 数据处理基础知识

具备数据统计处理和误差理论的基础知识。

2 技术要求

2.1 ATC 002-1 SPARK/ARC-AES 技术基础

2.1.1 术语及概念

掌握 SPARK/ARC-AES 分析技术基本概念和相关的技术用语。

- (1) 光谱及原子发射光谱
- (2) 火花光谱
- (3) 基态和激发态
- (4) 原子线和离子线
- (5) 分析线和内标线(参比线)
- (6) 分析线强度、内标线强度及相对强度
- (7) 罗兰圆
- (8) 光栅及焦距

- (9) 谱线、一级谱线和二级谱线
- (10) 色散率和分辨率
- (11) 光谱干扰
- (12) 光路校准
- (13) 分析基体、分析程序和校准曲线
- (14) 标准化
- (15) 标准样品、标准化样品及控制样品

2.1.2 基本原理

掌握 SPARK/ARC-AES 分析技术基本原理及应用。

- (1) 火花源/电弧原子发射光谱分析原理
 - a) 火花源/电弧原子发射光谱的产生
 - b) 火花源/电弧原子发射光谱定性分析原理
 - c) 火花源/电弧原子发射光谱定量分析原理
 - d) 火花源/电弧原子发射光谱分析对分析样品的要求
 - e) 火花源/电弧原子发射光谱分析的特点
 - f) 火花源/电弧原子发射光谱分析过程 光的产生→光的色散→光电转换→数据采集和处理。
- (2) 火花源/电弧原子发射光谱定量分析方法与方法的应用
 - a) 定量分析方法

校准曲线法:

- i 绝对强度-浓度校准曲线法
- ii 相对强度-浓度校准曲线法(内标法)
- b) 定量分析方法的应用
 - i 预制校准曲线法
 - ii 现场校准曲线法
 - iii 控制试样法
- 2.1.3 考核方式

书面考核。

2.2ATC 002-2 SPARK/ARC-AES 仪器设备与操作

2.2.1 仪器的基本构成

掌握 SPARK/ARC-AES 光谱仪基本构成、主要部件的用途及特点。

- (1) SPARK/ARC-AES 光谱仪基本构成
- A. 光源系统:火花台、对电极、激发光源、氩气系统
- B. 光学系统:入射狭缝、准直系统、光栅、出射狭缝、信号接收和放大系统
- C. 数据采集与处理系统
- (2) 主要部件的用途及特点
- 2.2.2 仪器辅助设备

熟悉 SPARK/ARC-AES 光谱仪的辅助设备及使用。

- (1) 稳压电源
- (2) 制样设备: 磨样机、车床、铣床、磨床
- (3) 氩气净化器
- 2.2.3 仪器校准与检定

了解仪器校准与检定规程各项要求,掌握日常分析时仪器的校准。

- (1) 主要检定项目
- a) 外观
- b) 绝缘电阻
- c) 波长示值误差及重复性
- d) 检出限
- e) 重复性
- f) 稳定性
- (2) 计量性能要求
- a) 波长示值误差及重复性
- b) 检出限
- c) 重复性
- d) 稳定性
- 2.2.4 仪器维护

掌握仪器各个系统和部件的日常维护, 常见故障的解决。

(1) 清理火花台

- (2) 电极的维护
- (3) 清洗透镜
- (4) 光路校准(描迹)
- (5) 清理尾气过滤系统
- (6) 真空系统或充气系统的维护
- (7) 氩气净化系统的维护

2.2.5 仪器操作技术

- (1) 样品的制备
- (2) 仪器各个工作参数的设定及检查
- (3) 掌握所用仪器操作步骤
- (4) 分析程序的选择
- (5) 校准曲线的标准化
- (6) 控制样品的选择
- (7) 分析过程控制、数据处理及结果输出
- (8) 操作安全规范及注意事项等
- 2.2.6 考核方式
- 2.2.6.1 书面考核
- 2.2.6.2 实际操作考核

2.3 ATC 002-3 SPARK/ARC-AES 国家标准方法与应用

掌握 SPARK/ARC-AES 分析方法在相关测试领域中的分析方法标准、适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题。

- 2.3.1 ATC 002 黑色金属材料领域 SPARK/ARC-AES 分析方法标准与应用
- 2.3.1.1 基本要求及术语

了解 SPARK/ARC-AES 分析技术在黑色金属材料测试上的基本要求,掌握黑色金属材料领域测试方面的相关知识和相关术语。

2.3.1.2 金属样品的处理

掌握样品处理过程和方法、所需的设备、注意事项。

2.3.1.3 分析方法

掌握 SPARK/ARC-AES 分析方法在黑色金属材料测试领域适用范围、使用要

求、具体分析步骤、结果计算、操作中应注意的问题。

2.3.2 ATC 002 有色金属材料领域 SPARK/ARC-AES 分析方法标准与应用

2.3.2.1 基本要求及术语

了解 SPARK/ARC-AES 分析技术在有色金属材料测试上的基本要求,掌握有色金属材料领域测试方面的相关知识和相关术语。

2.3.2.2 有色金属样品的处理

掌握样品处理过程和方法、所需的设备、注意事项。

2.3.2.3 分析方法

掌握 SPARK/ARC-AES 分析方法在有色金属材料测试领域适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题。

- 2.3.3 考核方式
- 2.3.3.1 书面考核
- 2.3.3.2 实际样品考核

2.4 ATC 002-4 SPARK/ARC-AES 数据处理

2.4.1 分析数据处理基础

重复性(短期精密度)、稳定性(长期精密度)、极差、检出限、背景等效浓度、测定下限、重复性限、再现性限、临界差等相关参数的定义和计算。

- 2.4.2 SPARK/ARC-AES 分析方法的评价和分析结果准确度的判定
 - (1) 分析方法的评价指标:方法适用性,检出限,测定下限
 - (2) 分析结果准确度的判定: 重复性限, 再现性限, 临界差。

2.4.3 SPARK/ARC-AES 测定结果的不确定度评定

掌握不确定度定义、分类及表示方法,了解 SPARK/ARC-AES 各类不确定度的评定。

2.4.4 考核方式

书面考核。

3 考核实施说明

- 3.1 考核试题范围为本大纲规定的所有内容
- 3.2 考核包括书面考核和实际操作考核两部分
- 3.3 书面考核

- 3.3.1 书面考核内容
 - (1) 技术基础
 - (2) 仪器设备与操作
 - (3) 标准方法与应用
 - (4) 分析结果的数据处理
- 3.3.2 书面考核试题类型

书面考核试题的类型包括选择题、判断题、填空题、问答题和计算题。

- 3.3.3 书面考核为开卷考试。
- 3.3.4 书面考核总分 100 分制, 85 分为及格分数。
- 3.4 实际操作考核
- 3.4.1 实际操作考核包括仪器设备实际操作考核和实际样品考核两部分。
- 3.4.2 仪器设备实际操作考核
- (1) 仪器设备实际操作考核由考核教师根据相关细则考核评定:
- (2) 仪器设备实际操作考核评分等级:通过,不通过。
- 3.4.3 实际样品考核

实际样品考核采取盲样测试考核或利用能力验证结果的办法。

- (1) 盲样测试考核的样品由考核中心发放:
- (2) 考生在实验室独立测试,填写完整的原始记录和报告单,报出结果;
- (3) 实际样品考核成绩的等级:通过.不通过。
 - 1) 考核的样品如为有指定值的样品,将报出结果与指定值比较,按相关标准要求判定:
 - 2) 其他样品由考核教师根据相关标准/规定要求判定。
- 3.4.4 实际操作考核的综合成绩由考核教师根据仪器设备实际操作考核和实际样品 考核综合判定:两项均通过的为通过,其中任何一项未通过则为不通过。
- 3.5 所有考生应遵守《检测人员考核管理程序》中规定的《考场规则》,违反者将取消考核资格和成绩。